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Fire risk to structures in California’s
Wildland-Urban Interface

Maryam Zamanialaei 1, Daniel San Martin2, Maria Theodori1,
Dwi Marhaendro Jati Purnomo1, Ali Tohidi 3, Chris Lautenberger4, Yiren Qin3,
Arnaud Trouvé3 & Michael Gollner 1

The destructive impacts of wildfires on people, property and the environment
have dramatically increased, especially in the Wildland-Urban Interface (WUI)
in California. In these areas structures are threatened by both approaching
flames and lofted embers which spread fire into and within communities.
While independent factors influencing structure fire protection are well
known, their combined effects remain largely unquantified, limiting the
accuracy of risk assessments and mitigation strategies. Here, we examine five
major historical WUI fires—2017 Tubbs, 2017 Thomas, 2018 Camp, 2019 Kin-
cade, and 2020 Glass Fires—utilizing machine learning (ML) analysis of on-the-
ground post-fire data collection, remotely sensed data, and fire reconstruction
modeling to assess patterns of structure loss and mitigation effectiveness. We
show that the spacing between structures is a critical factor influencing fire
risk, highlighting the importance of structure arrangement, while fire expo-
sure, the ignition resistance (hardening) of structures, and clearing around
structures (defensible space) work in combination to mediate fire risk. Utiliz-
ing an XGBoost classifier, structure survivability can be predicted to 82%
accuracy. Results highlight the effectiveness of hardening and defensible
space, with a hypothetical 52% reduction in losses. Our findings emphasize the
need for community-level mitigation to reduce structure loss in future
WUI fires.

Globally, the frequency, severity, and size of wildland fires has been
increasing, resulting in extremeevents that have led to dramatic losses
in terms of people, property and the environment1,2. A majority of
these impacts on people occur where houses and other urban devel-
opment intermingle with undeveloped wildland vegetation, an area
termed the WUI. This area has grown dramatically in recent years3,4

with one-thirdof all newhomes in theUSbuilt in theWUI5. Thewestern
United States has witnessed a 246% increase in structures lost to
wildfires from 2010–2020 compared to the previous decade6. Cali-
fornia, despite its long fire history, has experienced recent increases in
the number of very large fires (over 100,000 ha) resulting in massive

losses of lives and property7. Between 2013 and 2018, approximately
47,000 structures have been damaged or destroyed and 189 fatalities
have been attributed to wildfires in California8. This increasing risk has
consequences that jeopardize the economic stability, well-being of
local residents, and the environment in affected communities9.

Central to preventing future destruction has been the develop-
ment of mitigation measures aimed at reducing the likelihood of
ignition and spread in the WUI10–14. Improvements in building features
and materials (hardening) and clearing surrounding vegetation and
other flammable materials (defensible space) play important roles
mitigating fire spread into theWUI15–18 but differ in their characteristics

Received: 13 January 2025

Accepted: 15 August 2025

Check for updates

1Department of Mechanical Engineering, University of California, Berkeley, CA, USA. 2Departamento de Informática, Universidad Técnica Federico Santa
María, Valparaíso, Chile. 3Department of Fire Protection Engineering, University of Maryland, College Park, MD, USA. 4CloudFire Inc., Auburn, CA, USA.

e-mail: mgollner@berkeley.edu

Nature Communications |         (2025) 16:8041 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0001-5205-7955
http://orcid.org/0000-0001-5205-7955
http://orcid.org/0000-0001-5205-7955
http://orcid.org/0000-0001-5205-7955
http://orcid.org/0000-0001-5205-7955
http://orcid.org/0000-0001-7511-9274
http://orcid.org/0000-0001-7511-9274
http://orcid.org/0000-0001-7511-9274
http://orcid.org/0000-0001-7511-9274
http://orcid.org/0000-0001-7511-9274
http://orcid.org/0000-0002-6925-4020
http://orcid.org/0000-0002-6925-4020
http://orcid.org/0000-0002-6925-4020
http://orcid.org/0000-0002-6925-4020
http://orcid.org/0000-0002-6925-4020
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-63386-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-63386-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-63386-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-63386-2&domain=pdf
mailto:mgollner@berkeley.edu
www.nature.com/naturecommunications


because structures and vegetation have different heat release rates,
durations of burning, and responses to external exposure including
direct flame contact, radiation, and firebrands19. For instance, Ondei
et al.20 synthesize a zonation strategy for defensible space, focusing on
removing dead vegetation within 1.5meters of a house and managing
fuel connectivity up to 30 meters. Similarly, studies like Carton et al.21

stress the importance of fire-resistant construction, vegetation man-
agement, and the need for specific wildfire codes, particularly
addressing the unique needs of Indigenous communities and heritage
properties in Canada. While effective mitigation strategies have been
developed based on past testing and investigations22, their combined
effectiveness under different exposure conditions is not yet known5.

Previous geospatial studies have demonstrated the critical influ-
ence of spatial arrangement and biophysical factors23–25, with defensible
space around structures playing a substantial, albeit secondary, role26,27.
The role of building materials has also been examined, revealing mixed
findings27–29. For instance, Syphard and Keeley28 found structural fea-
tures like enclosed eaves and vent screens were crucial, while others
(Price et al., Metz et al., Knapp et al.)30–32 identified factors such as
spacing and arrangement as more important, suggesting determinants
of loss are often beyond homeowners’ control. A later study of the
Woolsey Fire suggests that proximity to destroyed structures and
buildingmaterials, such asmulti-pane windows and enclosed eaves, are
key factors in determining survival.27 Large structure loss datasets, such
as those from the Camp fire, show that homes built before 1997 had
markedly lower survival rates compared to those built after, under-
scoring the importance of construction standards32. The 2021 Marshall
Fire also highlights the significance of neighborhood and parcel char-
acteristics in housing survival, revealing the impact of jurisdictional
differences in building codes and planning31. Collectively, these studies
underscore that while defensible space is important, building features
and surrounding vegetation, as well as proactive mitigation strategies,
are critical to improving wildfire resilience.

Despite these advances, the majority of studies focus on single
events, and lack a comprehensive quantitative analysis of how miti-
gation measures, such as home hardening and defensible space,
interact and influence fire risk. In order to safeguard communities and
stem the current trend of destruction, we must quantitatively under-
stand how features influence fire risk to structures, particularly in
relation to fire exposure, surrounding vegetation, the proximity of
neighboring structures, and properties of the structures themselves.
We hypothesize that the combined effects of structure hardening,
defensible space, and structural separation can substantially reduce
the risk of structure loss, with the most substantial benefits occurring
when changes are made to both the structure itself and the sur-
rounding vegetation. Furthermore, changes to individual structures
may not be sufficient to reduce risk when structures are arranged at
high density, requiring community-wide mitigation.

Here, we combine the largest existing structure loss database
from California with simulated fire and ember exposure conditions to
structures across multiple large-loss events, providing a methodology
to quantify and compare the combined influence of exposure and
mitigations such as defensible space and home hardening on fire risk.
Unlike past studies, fire reconstruction modeling that includes urban
fire spread is used to quantitatively estimate the effect of flame and
ember exposure on structures. Geospatial assessments of vegetation
surrounding structures are addedusing both LiDARand visual imagery
to assess the level of defensible space (vegetation) surrounding
structures. The database is then fit using amultivariate analysis similar
to refs. 27,31 that distinguishes between the interrelated effects of
exposure, structure hardening, and defensible space. A parameter
importance analysis reveals the strong role both structure separation
and exposure play, distinguishing wildfire from other natural hazards
that are not affected by neighboring conditions, highlighting the
importance of a community approach to mitigation. The model

developed is strongly predictive when incorporating all the above
features and is also used to assess the impact of recommended miti-
gationmeasures on homes. It is found that it ismost impactful tomake
changes both to the structure itself and surrounding fuels, especially
vegetation and other flammable materials within 1.5m (5 ft) of the
structure (zone 0) to achieve the maximum benefit.

Results
In this study we took advantage of the Damage INSpection (DINS)
Dataset collected by on-the-ground CAL FIRE crews from structures
damaged, destroyed, or affected by wildfires in California during post-
fire investigations between 2013–2022 (California Department of
Forestry and Fire Protection (CAL FIRE))33. Figure 1 shows allfires in the
DINS dataset between 2017–2022 as well as five of the largest loss fires
in this dataset (2017 Tubbs and Thomas, 2018 Camp, 2019 Kincade,
and 2020 Glass fires) selected for further analysis based on data
availability and the number of structures exposed and destroyed. We
combined records of damage state and building features from this
dataset with remotely-sensed assessment of surrounding vegetation
(akin to defensible space) and structure footprints (to assess building
separation) of undamaged, damaged, and destroyed structures within
the final fire perimeter (CAL FIRE Historic Fire Perimeters), including a
91m (300 ft) buffer around any burned areas34. Post-fire reconstruc-
tion modeling was then used to add local fire exposure by both flames
(flame length) and embers (ember load) to the dataset resulting in a
more complete picture of fire exposure and effects.

Data from 5 selected fires were extracted from the overall DINS
dataset (~90,000 structures) by combining/stacking the five fire
datasets after preprocessing. Additional structures that were
unburned but exposed to fire were added to the dataset (Tubbs
~14,000, Thomas ~ 6000, Camp ~24,000, Kincade ~2000, and Glass
~5000 structures). We employed a resampling process to balance the
samples, resulting in a total of approximately 47,000 structures and
45,947 unique data points. We simplified the damaged, non-damaged,
and destroyed classifications in the original DINS to a binary classifi-
cation of Survived andDamaged categories because >90%of damaged
structures are destroyed.

Post-fire reconstruction
Five fires were reconstructed using a level-set model (ELMFIRE) that
included both wildland35,36 and urban fire spread37 to re-create fire
spread conditions and estimate critical missing exposure data (flame
length and ember deposition) from these events.While reconstruction
can never perfectly mirror on-the-ground conditions, these results
provide reasonable estimates taking into account spatiotemporal
variability in fuels, topography and weather. Figure 2 shows the
modeled fires and resulting flame length (in meters) and ember load
(in terms of number of embers deposited per meters squared). These
are extracted adjacent to each of 47,000 structures in our dataset and
distributions are shown in terms of flame and ember exposure as
probability density functions (PDF) in Fig. 3. These distributions reveal
a 27% and 39% overall decrease in exposure to flames and embers,
respectively for structures that survived vs. those that were damaged.
The decrease in exposure, however, is small in comparison to the
difference in total number of structures destroyed and suggests that
other features may play a role in determining which are more or less
likely to survive.

Feature contribution to structure loss
We applied an XGBoost38 Classifier to our dataset and then utilized a
SHapley Additive exPlanations (SHAP) model to explore the impor-
tance of various features on structure destruction. By looking at the
stacked results from all 5 fires (Fig. 4), we found that structure density,
which is determined by the distance between structures (SSD), is one
of the most important features in structure destruction. The second
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most important contributor to the classification results from the
XGBoost estimator was exterior siding, representative of the materials
used in construction, followed by Year Built. Note, in the DINS data-
base year built indicates the year that the primary structure in the
parcel was constructed. Year built has therefore been identified as a
confounding variable ultimately combining the effects from different
parameters such as hardening (e.g., materials used for roof

construction, eaves, vent screen, window pane, exterior siding),
vegetation, and surrounding features (e.g., defensible space/vegeta-
tion separation distance and nearby structures/structure separation
distance). Hence, considering Year Built as a single factor for deter-
mining vulnerability is inaccurate, and our results recommend
adopting a holistic approach in such determinations. Results under-
score the importance of hardening structures, structure density, and

© Google, Imagery © 2023, TerraMetrics © Google, Imagery © 2023, TerraMetrics

Fig. 2 | Simulation of fire spread and ember deposition for the 5 fires, overlaid
with fire perimeters. a Fire spread (shaded based on time of arrival) illustrates fire
progression in each event, while b ember deposition illustrates the large reach and
stochastic nature of generated firebrands. Fire spread and ember deposition out-
puts generated using the ELMFIRE model with the HAMADA urban fire spread
extension from elmfire.io (https://github.com/lautenberger/elmfire). In fire spread

maps each pixel is colored by hours since burnedor timeof arrival (white = 1 h; dark
red =maximum hours shown). Cumulative ember deposition used to show the
average number of embers per cell (white = 1; dark red = highest mean). Fire peri-
meters (red outline) and the California state boundary (cyan outline) were overlaid
in QGIS. Insets show details for 2017 Tubbs/2019 Kincade/2020 Glass (left), 2018
Camp (upper right) and 2017 Thomas (lower left).

DINS_2017_2022 [87156]

Not Damaged [34677]

Damaged [4435]

Destroyed [47687]
Fire Perimeters

California

Fig. 1 | Spatial distribution of damage to structures in California. CAL FIRE
Damage Inspection (DINS) data (2017–2022; n = 87,156) overlaid on fire perimeter
polygons (semi-transparent rose shading) for five of themost destructiveWUI fires
before the 2024–2025 Los Angeles area fires. Insets show details for a 2017 Tubbs,
2019 Kincade and 2020 Glass fires (left panel), b 2018 Camp fire (upper right) and

c 2017 Thomas fire (lower center). Symbols denote building damage state: cyan
circles, Not Damaged (n = 34,677); yellow circles, Damaged (n = 4435); red circles,
Destroyed (n = 47,687). The California state boundary is outlined in black. Coor-
dinates are in degrees latitude and longitude; scale bar in miles. Map created using
the Free and Open Source QGIS.
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building arrangements in WUI areas to mitigate fire risk and potential
destruction. These results are consistent with already-established
engineering knowledge22,32,39. Furthermore, these insights are based on
the available data rather than being drawn from direct experiments or
detailed numerical simulations at the flame scale.

Exposure was still important in predicting damage from pastWUI
fires, specifically considering flame length and ember load derived
from fire spread simulations. Flame length, which indicates the height
and intensity offlames, candirectly influence the severity of damage to
structures and vegetation in its path. Ember load, representing the
number and size of burning embers carried by the wind, also sub-
stantially contributes to the spread of the fire and subsequent struc-
ture loss, as these embers can ignite spot fires far beyond themain fire
front. The intensity and reach of flames, as well as the quantity of
embers, played pivotal roles in the extent of damage and structure loss
observed in these fires.

SHAP values provide a unifiedmeasure of feature importance in a
predictivemodel. Based on the evaluationmetrics, the XGBoostmodel
emerged as the most effective estimator, demonstrating superior skill
in predicting losses. This finding is supported by its higher average
SHAP values for key features compared to other models such as
Logistic Regression and Random Forest. The average SHAP values for
theXGBoost estimator revealed that certain features notably impacted
the model’s predictions. For instance, Structure Separation Distance
(SSD) and flame length had positive average SHAP values of 0.090 and
0.051, respectively, underscoring the importance of building
arrangements and fire behavior in risk assessment. Year Built showed
an average SHAP value of −0.058, suggesting that newer structures
might be associated with lower predicted losses, possibly due to
improved building codes and materials.

We also broke down the feature importance results for each of
the 5 individual fires assessed (Fig. 5), and found common features

Stacked WUI data
SSD

Exterior Siding

Year Built

Ember Deposited

Roof Construction

Vent Screen

VSD

Window Pane

Eaves

Mean (|SHAP Value|)

C
lustering cutoff=0.5

Flame Length

Fig. 4 | SHAP aggregation results characterizing the contribution of features
for the entire (stacked)WUIdata fromfivefires.Meanabsolute SHAPvalues from
an XGBoost classifier (n = 47,742 structures) trained onmergedWUI data from five
fires. Bars show the average |SHAP| for each predictor, ranked by contributions:
structure separation distance (SSD), exterior siding, year built, flame length, ember

deposition, roof construction, vent screen, vegetation separation distance (VSD),
window pane and eaves. Higher |SHAP| indicates greater contribution to the
model’s prediction of structure destruction. The vertical dotted line marks the
clustering cutoff (0.5) used to identify redundant features. SSD is the single
strongest driver of predicted loss, followed by exterior siding and year built.

(a) (b)

Fig. 3 | Number distribution showing structure damage based on standardized
flame and ember values. Number distributions of structure damage versus stan-
dardized ember and flame values (n = 47,742). Histograms with overlaid kernel-
density estimates display counts of surviving (blue) and destroyed (red) structures

for a standardized embers and b standardized flame. These distributions highlight
the pronounced effect of simulated ember and flame exposures on the destruction
of structures in large WUI fires.
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of importance: SSD, flame length, and year built, but distinct dif-
ferences were also revealed between individual fires. Structure
separation distance (SSD) was the most important predictive fea-
ture in the 2017 Thomas, 2018 Camp, 2019 Kincade and 2020 Glass
fires while flame length was the most predictive feature for the 2017
Tubbs fire. In fires that burn through densely populated areas,
wildfires can transition into urban conflagrations that become
dominated by structure-to-structure spread, which is most strongly
influenced by SSD. The high density of structures in the Thomas and
Camp fires in the cities of Paradise and Ventura (Butte and Ventura
counties) therefore emphasize this mode of spread. In the Kincade
and Glass fires, the clustering of structures in Geyserville (Sonoma
County) and Deer Park (Napa County) contributed to the rapid
urban spread of the fire. Flame Length substantially contributes to
structure destruction in the Tubbs fire and is the second most
important factor for the Thomas, Camp, and Kincade fires. In the
Glass fire, it ranks third in importance, emphasizing the role of
nearby buildings and surrounding fuels in spreading flames to
structures. Year built, in conjunction with building characteristics
(eaves, roof, vent, siding, window), underscores the significance of

home hardening in dense WUI areas, limiting fire spread and pro-
tecting structures from losses.

Figure 6 shows the distribution of four key features—SSD (struc-
ture separation distance), FLAME (flame length), YEAR BUILT (year
primary structure on parcel was built), and EMBER (ember load)—
across five fires: Tubbs, Camp, Glass, Kincade, and Thomas. Each panel
represents one feature, displaying both the distribution of values
through a violin plot (in light gray) and the mean values (in blue). The
violin plots highlight the density of feature values, with wider sections
indicating regions where values are more concentrated, allowing for a
comprehensive comparison of how each feature behaves across dif-
ferent fires. For instance, the SSD and YEAR BUILT features show
relatively wider distributions in the Glass fire, suggesting a broader
range of structure separation distances and building years compared
to other fires. Overlaid bar plots show themean feature values for each
fire, providing insight into the central tendencies. For example, the
SSDandYEARBUILT features have relativelyhighermeans in theCamp
and Glass fires, indicating greater separation distances and older
structures on average in these regions. In contrast, the Kincade and
Tubbs fires exhibit lower mean SSD values, suggesting tighter
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Fig. 5 | SHAP aggregation results for characterizing the contribution of fea-
tures for five individual fires. Mean absolute SHAP values (mean |SHAP|) for the
top ten predictors in each fire-specific XGBoost model. Sample sizes are: a 2017
Tubbs, n = 13,027; b 2017 Thomas, n = 5192; c 2018 Camp, n = 23,204; d 2019

Kincade, n = 1555; e 2020 Glass, n = 4768. Bars are ordered by decreasing mean |
SHAP|; annotations show the numeric mean |SHAP| values. The vertical dotted line
in each panel marks the hierarchical clustering cutoff (0.5).
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structure spacing. The combination of these two plots makes it pos-
sible to assess not only the average feature importance (through the
bar plots) but also the variation within each fire (through the vio-
lin plots).

Damage prediction results
Weapplied a rangeofmachine learningmodels, ultimately selecting an
XGBoost Classifier as it was the most accurate to investigate the five
large WUI fires in our dataset to predict structure survival during each
fire. Linear models (logistic regression) have been used in the
past24,28,40 and achieved an accuracy to predict structure losses for our
5-fire database of 78%, In comparison, the CatBoost and Random
Forest classifiers improved performance to 80% and 81% respectively,
and the XGBoost classifier further increased accuracy to 82%. Beyond
the numerical gains, XGBoost’s ability to capture non-linear relation-
ships and interactions among features, along with its robust regular-
ization and efficient hyperparameter tuning, contributed to its
superior overall performance. Consequently, after comparing related
metrics—including accuracy, precision, AUC, recall and F1-Score—we
selected XGBoost as the preferred model for our study.

A comparative analysis between the Logistic Regression, Random
Forest, CatBoost, and XGBoost models is included in the “Methods”
section and Supplementary Information (Supplementary Materials
Figs. 1–3 and Supplementary Materials Tables 1–3) but importantly
underscores the need for selecting an appropriate algorithm based on
the specific characteristics of the dataset and outcome to be achieved.
Additionally, we provide a ranking comparison that summarizes the
predictive performance of our models across both the DINS dataset
(2017–2022) and the combined dataset for five fires. Table 1 presents
key performance metrics including Accuracy and AUC as well as the
top three important features identified for each model, offering a
comprehensive evaluation of each model’s strengths and limitations.
This ranking not only highlights the efficacy of ourmodeling approach
but also provides valuable insights into the relative performance
across datasets.

A confusionmatrix is shown in Table 2 outlining the performance
of our XGBoost classification algorithm breaking down predicted
outcomes against actual results, delineating true positives (TP), true
negatives (TN), false positives (FP), and false negatives (FN). The area
under an ROC curve (AUC) is also shown as another measure to eval-
uate the model’s overall performance alongside the accuracy (per-
centage of correct predictions themodel makes). Overall the XGBoost
Classifier has a high accuracy in predicting the occurrence of
destruction for each of the 5 individual WUI fires, despite severe lim-
itations in data coming from the aftermath of real destructive events.
An accuracy threshold of 79% is achieved for each fire except for the
Kincade fire (63%) which had a large number of missing values in the
DINS inspection dataset and affected the results. The XGB classifier
was also applied to the full DINS dataset (2017–2022) which incorpo-
rated the same preprocessing as the 5 fires but did not include expo-
suremodeling values anddefensible space, although it did incorporate
all other analyses including structure spacing, and year built. An
accuracy of 77% was achieved which demonstrates the flexibility and
applicability of thismodel evenwhennot all data canbe accounted for.

Using our model we were able to examine various scenarios
including home hardening and defensible space clearing to compare
what changes in predicted structure loss and survivabilitymight occur,
in order to propose effective mitigation strategies. This is particularly
important because structure density cannot be modified for existing
structures (which make up more than 98% of the current housing
stock22,41. We applied this to the 5-fire database we created. In the first
scenario, which involved home hardening, we adjusted all hardening
values in our dataset to fire-safe ones (e.g. non-flammable siding, fine
mesh over vents, double paned windows, non-flammable roof, etc.)
and applied the XGB model. This resulted in a 25% survival rate with

(a)

(b)

(c)

(d)

Fig. 6 | The standardized distribution (gray) and mean values (blue) of
important features across five fires. Gray violin plots show the standardized
distributions of a structure separation distance (SSD), b flame length, c year built
and d ember deposition for each fire. A bold central line marks the median in each
violin. Sample sizes are: Tubbs (n = 13,027), Camp (n = 23,204), Glass (n = 4768),
Kincade (n = 1555) and Thomas (n = 5192).
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75% structure loss due to WUI fires (Supplementary Materials Fig. 6).
Next, we combined home hardening with clearing defensible space in
Zone 0 (0–5 feet; 0–1.5meters), which effectively doubled the survival
rate to 40% and reduced the loss rate to 60% (SupplementaryMaterials
Fig. 7). Finally, we implemented an extreme mitigation scenario that
included both home hardening and the clearing of defensible space in
Zone 0 (0–5 feet; 0–1.5 meters) and Zone 1 (5–30 feet; 1.5–9 meters).
This further increased the survival rate to 48% and reduced the
structure loss to 52% (Supplementary Materials Fig. 8). Figure 7 shows
the structure loss and survivability across variousmitigation scenarios.
It is crucial to acknowledge that these hypothetical scenarios did not
incorporate the impact of suppression efforts orfirefighting strategies,
which could substantially influence the outcomes in real-world situa-
tions. Therefore, the results from this analysis should be considered as
theoretical estimates, and the actual outcomesmaydiffer considerably
when these real-world mitigation strategies are applied.

Discussion
Decades of research have shown the importance of ignition-resistant
construction, defensible space, and the proximity of structures to one
another16,22,25,32,42. The ranked importance and interplay between these
mitigation measures has now been presented in this study, utilizing
simulations to extract exposure conditions during different fires. The
application of XGBoost and SHAPmethods has illuminated the critical
features contributing to structure destruction. Following investiga-
tions of the Camp fire by Maranghides et al. and Knapp et al.22,32

Structure Separation Distance (SSD) arose as a key metric in char-
acterizing the likelihood of loss for any particular structure during
these large WUI fires. While smaller fires may occur through sparse
housing arrangements, the majority of structure losses in California
have occurred in large-loss fires in moderately dense (suburban)
communities28,32. In these fires, the structures themselves become fuel
and contribute to spread. These existing structures pose a unique
challenge in hazard management—they are immobile. While these
structures can be hardened, they cannot be readily removed or dis-
placed like many other WUI fuels.

The analysis revealed the role of interactions among competing
factors (like SSD, flame length, ember load, year built, and exterior
siding) in influencing fire dynamics, showcasing that multiple features
contribute simultaneously to fire risk to structures. Our results show
that the most important factor that cannot be changed is the distance
between structures, as conflagrations tend to consume a majority of
houses in major fires. Nevertheless, there is still a substantial oppor-
tunity to enhance safety through effectivemitigationmeasures such as
hardening structures and establishing a defensible space. Mitigation
measures on the structure (hardening) combined with removal of
surrounding fuels in the area immediately adjacent to the structure
(zone 0) has the potential to dramatically reduce losses in future fires.
While applying these measures to any particular structure within a
dense urban areamakes little difference on the survivability of a single
home, substantial reductions in losses are achievable when
community-wide actions can be applied. This has been proposed in
many studies and is a major tenant of community risk-reduction pro-
grams, however, it has not been shown to be effective before because
previous studies focus more on individual structures. The effect of
community risk reduction may have other benefits as well, with
amplified effectiveness to responding fire crews28. When fewer homes
ignite from embers or direct flame contact, less structure-to-structure
spread results, and the fire service is freed up to focus on those
structures that aremost threatened. If arriving early infireprogression,
it is possible that embers can be extinguished and the “disaster
sequence” posited by Calkin et al.10 can be disrupted and a smaller
number of homes may be lost.

While hardening and defensible space actions may not alter the
fundamental risks posed by structure proximity, they can still drama-
tically improve the survivability of buildings during wildfires. By
examining individual fire cases, we can further tailor mitigation
approaches to address specific vulnerabilities and enhance resilience
against future wildfires. This is apparent when we see that the factors
most correlatedwith structure destruction change for some fires, such
as the Tubbs fire where flame length played a greater role than struc-
ture spacing overall. During this fire, sparser structures could

Table 1 | Comparative model performance ranking for DINS (2017–2022) and combined five fires datasets

Model Dataset Accuracy AUC Key features

Logistic Regression DINS (2017-22) 0.75 0.81 Exterior Siding Window Pane Eaves

Random Forest DINS (2017-22) 0.75 0.82 Exterior Siding Year Built SSD

XGBoost DINS (2017-22) 0.77 0.84 Exterior Siding Year Built SSD

CatBoost DINS (2017-22) 0.75 0.80 Exterior Siding Year Built SSD

Logistic Regression 5 Fires Combined 0.78 0.65 Exterior Siding Year Built Vent Screen

Random Forest 5 Fires Combined 0.81 0.83 Exterior Siding SSD Vent Screen

XGBoost 5 Fires Combined 0.82 0.83 SSD Exterior Siding Year Built

CatBoost 5 Fires Combined 0.80 0.80 SSD Ember Deposited Year Built

Table 2 | Results of XGBoost predictions on each test set with a resulting confusion matrix displaying model performance in
terms of true positives (TP), true negatives (TN), false positives (FP), false negatives (FN), area under an ROC curve (AUC), and
the percentage of correct predictions the model makes (Accuracy), the accuracy of positive predictions (Precision), model’s
ability to identify all positive instances (Recall), and the harmonic mean of precision and recall (F1 score)

WUI fire TP FP TN FN AUC Accuracy Precision Recall F1-score

Tubbs 1041 58 0 2 0.685 0.94 0.94 0.99 0.97

Thomas 147 25 31 21 0.808 0.79 0.85 0.87 0.86

Camp 3506 686 198 110 0.784 0.82 0.83 0.96 0.89

Kincade 27 58 124 27 0.635 0.63 0.31 0.50 0.38

Glass 151 58 496 106 0.841 0.79 0.72 0.58 0.64

5 Fires Combined 4785 847 885 353 0.833 0.82 0.84 0.93 0.88

All CA DINS (2017-22) 5198 133 2998 1073 0.84 0.77 0.79 0.82 0.81
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potentially have benefited from additional fuel management to reduce
fire exposure, although some areas, such as the Coffey Park commu-
nity were dense and still dominated by structure separation. While
sidingmaterialswerenot critical to predict outcomes in anyonefire, as
an overall predictor theywere very important, which speaks to the fact
that clustered structures on each fire often had similar construction
materials, year built, etc. so that those factors do not appear as
important.

Overall, we have shown the potential to combine extensive on-
the-ground post-fire data collection, analysis of remotely sensed data,
and fire reconstruction modeling to better understand the compli-
cated interactions between different features and structure surviva-
bility during wildfires. Despite the improvement of these data and
modeling tools, we still have a dramatic lack of information before and
during fires that is desperately in need of improvement. Pre-fire
inspections are limited andwere not available at scale to aid this study,
thereforemuch of the data was collected after the fire and is not at the
fine scale to distinguish all potential factors that play a role in
destruction. For instance, year built is an inter-related term that also
corresponds to materials used, construction type, building codes, etc.
It is still useful because it is one of the most easily obtained factors for
future analysis, but it makes it harder to distinguish between other
factors. During the fires it would also have been useful to observe
failure modes more directly, e.g. observation of what part of the
exterior ignites by embers, structure-to-structure spread, etc. Still, this
study provides a broader understanding useful to the field now and a
framework for future data to be applied.

This analysis supports the effectiveness of home hardening and
defensible space in reducing structure losses in theWUI, underscoring
a need for more application in high-risk areas. Integrating fire risk
assessments into land-use planning, including zoning regulations that
incorporate riskmaps to guide development away fromhigh-exposure
areas or require stricter building codes requiring defensible space and
home hardening in communities that can be exposed to wildfires may
help reduce losses. Similarly, policies that provide financial incentives,
subsidies, or insurance benefits for retrofitting homes can also con-
tribute to enhancing community resilience. These results can also be

used to inform community outreach and education. Fire risk com-
munication grounded in localized data can empower residents to take
action and participate in preparedness efforts.

It is important to highlight potential limitations of the input data
and methods used in this study. While reliance on post-fire damage
inspection (DINS) assessments provides clear distinctions on the
damage state of structures, there is inherent uncertainty on collected
features that are difficult to determine in a post-damage state. Addi-
tionally, the DINS data may not capture the full range of potential
factors that contribute to fire damage, such as local preparedness, fire
suppression efforts, construction practices, etc., which could affect
the generalizability of the findings to other regions or future fires.
Remotely-sensed data, particularly for vegetation separation distance
(VSD) is also subject to potential errors as small fuels that can con-
tribute to local fire spread may not be visible at the resolution cap-
tured. The moisture content, species, and arrangement of vegetation
and other flammable materials may also influence the effectiveness of
defensible space but can’t be captured through remote sensing mod-
alities. Estimates of fire and ember exposure from fire reconstruction
modeling are also subject to potential errors from deviations in fuel or
weather input data and the empirical nature of the model itself.
Machine Learning models are also limited in their reliance only on
provided data. Efforts have been taken to minimize these potential
sources of error, including conducting a comprehensive sensitivity
analysis with perturbations, an assessment of the trained MLmodel to
systematically assess how variations in key parameters influence our
predictions, and use of a validation dataset to assess the performance
of the model.

Methods
Weprimarily relied on amodified database from five selected fires that
includes more than 47,000 structures with two broad damage states:
“Survived” and “Destroyed”, and five detailed damage states:
“Destroyed (>50%)”, Damaged (“Major (26–50%)”, “Minor (10–25%)”,
“Affected (1–9%)”), “No Damage”. The CAL FIRE Damage INSpection
Program (DINS)was foundedwith the goal to collect data on damaged,
destroyed, and unburned structures during and immediately after fire

Fig. 7 | Probabilities of predicted structure destruction under various mitiga-
tion scenarios. Horizontal stacked bars show percentage of structures Destroyed
(navy) versus Survived (pale blue) under various predictedmitigation scenarios: No

Mitigation (baseline), Scenario 1 (home hardening only), Scenario 2 (home hard-
ening and clearing Zone 0), and Scenario 3 (home hardening and clearing Zones 0
and 1). Percentage labels inside bars (n = 47,742).
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events to assist in the recovery process, and to provide local govern-
ments and scientists information for analyzing why some structures
burned and why some survived43. Through a public records request,
we acquired DINS data formore than 90,000 structures that survived,
were damaged, or were destroyed across all California wildfires from
2013–2022, making this potentially the largest combined dataset of its
sort. We then incorporated risk factors associated with structure
destruction by wildfires to the DINS data to gain a deeper under-
standing of WUI destruction. These factors include structure density,
building materials, year built, defensible space, and exposures to
structures (fire intensity and ember). We employed several Machine
Learning (ML) techniques to identify and highlight the important fea-
tures in our WUI data. These techniques included feature selection,
feature engineering, and model interpretation methods to ensure we
couldpinpoint themost influential variables influencing our results. To
enhance the performance of the ML model in this study, we imple-
mented a range of data preprocessing techniques such as data clean-
ing, normalization, and encoding. These preprocessing steps were
crucial for improving model accuracy, reducing noise, and ensuring
the robustness of our findings. By meticulously preparing the data, we
ensured that the ML model could effectively learn and make accurate
predictions from our complexWUI dataset. We opted for the XGBoost
(eXtreme Gradient Boosting) algorithm for our ML model due to its
superior performance over other methods on our dataset. We also
leveraged the SHAP (SHapley Additive exPlanations) model, which
provides a nuanced understanding of each column’s contribution to
the overall predictive outcome. This technique allowed for a com-
prehensive assessment of the importance of variables within the
dataset, enhancing the robustness and reliability of our analysis. The
results of Confusion Matrices and Receiver operating characteristics
(ROC) Curves, in addition to an advanced computational framework,
allowed us to delve into the intricacies of the dataset, capturing
complex relationships and patterns that might not be discernible
through conventional methods. Our evaluation extended beyond a
generalized assessment, as we calculated the accuracy and sensitivity
metrics for each individual fire and aggregated the results to encom-
pass all structures within the damage dataset. This meticulous analysis
not only provided insights into the predictive performance of our
model on a per-fire basis but also yielded a comprehensive under-
standing of its effectiveness across the entire spectrumof structures in
the damage data.

Risk factors to structures from wildfires in the WUI
The methodology for integrating risk factors related to structure
destruction builds upon the combination of on-the-ground data with
fire modeling reconstructions by Hakes and Theodori et al.34 for
community-level risk assessment for the Tubbs fire, which includes:

Structure spacing which represents “Structure Separation Dis-
tance (SSD)”. We employed the Microsoft Maps dataset (available at
https://github.com/microsoft/USBuildingFootprints), which encom-
passes open building footprints datasets for entire counties in the
United States. This dataset comprises 129,591,852 computer-generated
building footprints. Additionally, we utilized QGIS software to access
geospatial data concerning urban infrastructure, building locations,
and their spatial interconnections.

The year built refers to the year in which the primary structure on
aparcel of landwas constructed. In the context of analyzing the impact
of WUI fires, the Year Built variable is important because the age of a
structure can influence its susceptibility to fire damage. Furthermore,
it acts as a confounding variable that can affect both the building
features and the extent of damage.

Concerning fire safety in building construction materials, numer-
ous in-depth studies have been carried out through meticulously
planned laboratory tests18,44. Despite the solid laboratory evidence, few
empirical studies havedocumentedbuilding characteristics associated

with structure loss in real wildfire situations28. In this study building
characteristics include eaves, vent screens, exterior siding, roof con-
struction, and window panes.

In terms of defensible space, which is representing in this study as
“Vegetation SeparationDistance (VSD)”, the state ofCalifornia requires
fire-exposed homeowners to create a minimum of 30m (100 ft) of
defensible space around structures, and some localities are beginning
to require at least 60m (200 ft) in certain circumstances26. We estab-
lished three categories for the Vegetation Separation Distance (VSD):
Zone0, which comprises the initial five feet from the building or “0–5”;
Zone1, encompassing the area within 30 feet of the building or “5–30”;
and Zone2, extending to within 100 feet of the building or “30–100”
(CAL FIRE DSpace: https://www.fire.ca.gov/dspace). Remote sensing
techniques were utilized to analyze the density and distribution of
vegetation in the WUI regions and urban settings, extracting valuable
insights from the aerial and satellite imagery and LiDAR data. The
publicly available datasets (including countywide LiDAR data and a
fine scale vegetation and habitat map) which were produced by the-
Sonoma County Agricultural Preservation and Open Space District
and the Sonoma County Water Agency, provide an accurate, up-to-
date inventory of the county’s landscape features, ecological com-
munities and habitats (Sonoma County Vegetation Map: https://
sonomavegmap.org/).

Exposures including fire intensity (flame length) and firebrand
(ember load). Houses are destroyed during wildfires when exposed to
flames in adjacent fuel, radiant heat from nearby fuel (≤40m)16, or
airborne embers and firebrands originating in nearby and distant fuel
(typically < 10 km)45,46. In this study, we used the Eulerian Level set
Model of FIRE spread, ELMFIRE, an operational fire behavior and
spread simulation tool35 for its additional capability in simulating
ember deposition ofmultiple embers and its implementation ofMonte
Carlo analysis36 to capture the stochasticity anduncertainty inherent in
wildland firemodeling.We used andmodified the semi-physicalmodel
of 36,47 to include urban fire spread by using the empirical approach of
HAMADA37.

Data preprocessing
To predict the damage for any of the fire datasets, the dataset was
divided into the target variable or y, and all the other features as inputs
or X. A stratified split was executed based on “y” values, allocating 80%
of the data for training purposes and reserving the remaining 20% for
the testing set. This stratified approach ensured that the class pro-
portions in the target variablewere similar in both subsets, minimizing
the risk of bias due to imbalanced classes. By preserving the target
class distribution, this partitioning strategy not only improved the
model’s ability to generalize but also provided a more accurate and
reliable performance evaluation when tested on unseen data. Addi-
tionally, the use of a fixed random_state ensured that the split was
reproducible, allowing for consistent model training and evaluation
across different iterations. As part of the model training process, we
utilized GridSearchCV for hyperparameter tuning across several
models, including Logistic Regression, Random Forest, and XGBoost.
During the grid search, k-fold cross-validation (with cv_k_folds set to
10) was employed to evaluate the models, ensuring robust validation
andmitigating overfitting. In the cross-validation process, the datawas
split into k-folds, where each fold served as the validation set once,
while the remaining k-1 folds were used for training. This allowed the
grid search to identify the optimal set of hyperparameters based on
performance metrics, such as accuracy and F-beta scores. After
selecting the best hyperparameters, the model was refitted on the
entire training set, ensuring that the final model was well-tuned for
testing.

To address the noteworthy variations in the scales of the model
inputs, a vital preprocessing step was implemented prior to model
training. Using the scikit-learn package48, we first designed imputation
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strategies through IterativeImputer to handle missing values. These
strategies were trained on the training set and then applied to both the
training and test sets. The imputation strategy was tailored for each
feature in stacked WUI data and for each wildfire case. For example,
Roof Construction (19,318 non-null), Eaves (19,318 non-null), Vent
Screen (19,318 non-null), Exterior Siding (19,318 non-null), Window
Pane (19,318non-null), VSD (3504non-null), andYearBuilt (22,501 non-
null) were imputed using a nearest neighbor approach. For Year Built
in individual fire cases, either nearest neighbor imputation or a
median-based strategy was adopted, whereas numerical features like
Embers (11,549 non-null), and Flame length (14,578 non-null) were
aggregated (e.g., using themean ormedian, potentially augmented by
k-nearest neighbors) to fill in missing values. In our approach, we
incorporated a spatial clustering technique that utilizes proximity-
based methods for data imputation. Specifically, we leveraged Haver-
sine Distance and Pairwise Distance metrics in UTM coordinates to
cluster data points based on their geographic proximity. This spatial
clustering approach ensures that similar locations, defined by latitude
and longitude, are treated consistently when imputing missing values.
By considering spatial proximity, wemake the assumption that nearby
data points are likely to share similar attributes, enhancing the
robustness of the imputation process. Next, we normalized the
numerical variables using StandardScaler, ensuring that theywereon a
similar scale, which helps in the convergence and performance of
various models. Additionally, we conducted OneHotEncoding and
Label Encoding on categorical variables using OneHotEncoder and
LabelEncoder from scikit-learn to convert them into a numerical for-
mat that can be understood by the models. Class balance is achieved
through the binarization of different labels/classes with damaged and
not damaged/survived. This approach is essential, particularly in sce-
narios where certain damage classes may be underrepresented. This
preprocessing pipeline allowed us to use a variety of models on the
dataset, ensuring compatibility and enhancing the overall perfor-
mance of the models.

In essence, this procedure, encompassing data categorization,
stratified splitting, imputation, standard scaling, OneHotEncoding/
Label Encoding, and resampling, laid the foundation for a robust and
unbiased evaluation of the model’s predictive capabilities regarding
fire damage across diverse datasets.

Machine learning techniques
Machine learning (ML) methods have recently been applied to wild-
land fire49 and present an ideal platform for WUI fires as interactions
between competing factors can be fit and modeled. In this work, we
employed both regression and classification ML techniques to our
combined dataset resulting in a predictive model for structure
destruction based on home hardening (roof, siding, vents, eaves,
window, year built), vegetation separation (defensible space and sur-
rounding), exposure metrics (flames and embers), and structure spa-
cing. The XGBoost (eXtreme Gradient Boosting) machine learning
algorithm was chosen as it outperformed other methods on our
dataset. The model hyper parameters were tuned using Randomi-
zedSearchCV, which was employed to perform a randomized search
over a predefined parameter grid. This approach was used because of
the large number of parameters in the XGBoost model. Hyper para-
meter selection is performed using the best result in terms of the
following classification metrics: F-beta50, F1-Score50, accuracy51,
balanced accuracy52 and precision-recall scores53. The F-beta score is
used to balance precision and recall, with the beta parameter allowing
for tuning the model’s sensitivity to false positives and false negatives.
Finally, feature importance with SHAP aggregation analysis was uti-
lized to quantify the contribution of each feature to the target variable.
A higher feature importance score indicates that the feature has a
greater influence on the model’s prediction54. The SHAP model con-
nects optimal credit allocationwith local explanations using the classic

Shapley values from game theory and their related extensions55. This
was then applied to a unified framework for interpreting predictions to
explain the output of any machine learning model.

Classifiers
We employed several classification models, including Logistic
Regression and Random Forest48, and Gradient Boosting based
XGBoost56 since there is another method called Gradient Boosting
Machine other than Extreme Gradient Boosting Machines (XGBoost).
Each of thesemodels offersdistinct advantages andmethodologies for
analyzing feature importance.

Logistic Regression is a generalized linear model used for classi-
fication problems57 and we use it as a base model to compare with
more complex models. The second model used in this work is the
Random Forest. Random Forests are a technique in ensemble learning
utilized for tasks such as classification and regression. During the
training, several decision trees are built. In classification, the random
forest outputs the class chosen by the majority of trees58. CatBoost
employs an ordered boosting technique to minimize target leakage
from categorical features, often leading to robust performance even
with limited parameter tuning56. While CatBoost can seamlessly inte-
grate categorical data with minimal preprocessing and achieve com-
petitive performance on binary classification tasks, logistic regression,
random forest, and XGBoost typically require more elaborate feature
engineering and preprocessing, which in turn can influence both
model performance and the interpretability of sensitivity analyses
such as those based on SHAP values. Finally, Gradient Boosting (GB) is
a method in machine learning that employs boosting within a func-
tional framework. The XGBoost (eXtreme Gradient Boosting) is a GB
implementation that has been used as it outperformed other methods
on our dataset. XGBoost is often preferable for developing predictive
models for large datasets due to its accuracy, efficiency, and
adaptability38. Furthermore, XGBoost is a robust algorithm for both
classification and regression problems. Due to its strengths in model
prediction, XGBoost can be utilized for damage assessment to create
predictivemodels for structure destruction. The SHAP analysis results
for all four models are provided in the Supplementary Materials
(Supplementary Figs. 1–3). These figures offer a detailed breakdown of
how each feature contributes to the predictions across models,
enhancing the interpretability of our findings and complementing the
results discussed in the main text.

Feature contribution through SHAP analysis
Whilemachine learning (ML)models are increasingly used due to their
high predictive power, their use in understanding the data-generating
process (DGP) is limited. Understanding the DGP requires insights into
feature-target associations, which many ML models cannot directly
provide, due to their lack of understanding causal effects. Feature
importance (FI) methods provide useful insights into the DGP under
certain conditions59. Furthermore, SHAP (SHapley Additive exPlana-
tions) is a unified framework for interpretingmachine learningmodels
based on cooperative game theory55. It assigns each feature an
importance value for a particular prediction by computing the con-
tribution of each feature to the prediction, averaging over all possible
combinations of features. This approach ensures consistency and local
accuracy, providing insights into how different features influence
model predictions. SHAP values can explain individual predictions and
provide a global understanding of the model’s behavior, making it a
valuable tool for model interpretability in research54. SHAP can be
considered a form of in-sample sensitivity analysis because it assesses
how changing a feature or a subset of features affects the model’s
output. It evaluates the impact of including or excluding a feature and
identifies which features contribute most to the predictions60. We
utilized SHAP interpretation analysis of feature importance to identify
and understand the key factors driving structure destruction in WUI
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fires. In this study, we opted for SHAP (SHapley Additive exPlanations)
as a model-agnostic tool because its values not only quantify the
magnitude and direction of each feature’s contribution, but also cap-
ture complex non-linear interactions between variables55. This pro-
vides both local and global insights that are critical for understanding
the multifaceted nature of fire damage. For example, SHAP allowed us
to reveal how features such as SSD, ember exposure, and flame length
interact in non-linearways that traditional importancemeasuresmight
overlook. Ultimately, the detailed and context-specific information
provided by SHAP helped us interpret the predictive factors driving
structural vulnerability, reinforcing the robustness of our findings.

Sensitivity analysis for the machine learning model
We developed a comprehensive sensitivity analysis framework to
assess how variability in key input features from the exposure model
(ember load and flame length) affects our model predictions. For each
of the five fires, ensemble outputs from the WUI fire spread model
were used to perturb the “ember load” and “flame length” variables
while keeping other inputs fixed. By aggregating the model outputs
from these multiple ensemble runs, we computed the mean predic-
tions and corresponding uncertainties for each test sample. This
approach allowed us to quantify the impact of non-linear interactions
and input variability on the final predictions, offering both local and
global insights into model performance.

Visualizations, such as kernel density estimation (KDE) plots,
clearly illustrate the distribution and variability of the predictions
across the test samples (Fig. 8). The shaded regions represent the
uncertainty around the mean predictions for both ember and flame
perturbations, with the respective overall mean, standard deviation,
and relative uncertainty values indicated within the plots. These dis-
tributions provide a clear view of the uncertainty and variability in the
model’s response to perturbations in ember load and flame length.
Additionally, SHAP analysis was employed to further interpret the
contributions of each feature, enhancing our understanding of the
model’s behavior under different exposure conditions. This sensitivity
analysis not only characterizes the associated uncertainties related to
flame and ember in the model but also suggests that the machine
learning estimator, XGBoost, has learned anunderlying understanding
of the problem implying intermediary outcomes other than damaged
and survived are possible in the dataset; see the emerged middle class
distributions in Fig. 8. Additionally, it helped us gain insights into the
physical factors influencing damage, as it highlights the non-binary
classifications for the damage classes, offering a more nuanced
understanding of the damage severity.

Confusion matrix and ROC curve for predictions
A confusion matrix summarizes the classification performance of a
classifier with respect to some test data. It is a two-dimensionalmatrix,
indexed inonedimensionby the true class of anobject and in theother
by the class that the classifier assigns61. Receiver operating character-
istics (ROC) graphs are useful for organizing classifiers and visualizing
their performance. A receiver operating characteristics (ROC) graph is
a technique for visualizing, organizing and selecting classifiers based
on their performance62. We investigated the five large WUI fires in our
dataset to predict structure survival during each fire by understanding
the model’s accuracy, and other key performance metrics. By analyz-
ing the confusionmatrices andROCcurves for eachfire event, wewere
able to identify patterns and discrepancies in model performance,
leading to a better understanding of the factors influencing structure
survival in large WUI fires.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The datasets generated during and/or analyzed during the current
study are available in the [DINS_data_analysis] repository, [https://
github.com/berkeley-firelab/DINS_data_analysis]; [https://doi.org/10.
5281/zenodo.15776778]63.

Code availability
The code used to conduct the analysis in this study is available in the
[DINS_data_analysis] repository at [https://github.com/berkeley-firelab/
DINS_data_analysis]; [https://doi.org/10.5281/zenodo.15776778]63.
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